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	 As a beginner that has just begun to see the complexities that the fields of 
Machine Learning and Artificial Intelligence have in store, it is clear that we need 
brilliant minds from many perspectives pondering into it. With this exponential 
technological growth in our computational power added with the intellect of the 
pioneers in deep learning, it is increasingly important for people across disciplines 
to learn about AI and its capabilities. My goal throughout my career will be to show 
people that computer science has much more potential than it might look like. 
Studying artificial intelligence and deep learning is more than the complex math 
symbols and confusing code; but philosophies of learning, studying biological 
systems in nature, and bringing ideas from many scientific domains to solve the 
problems in AI. The solutions to the problems that arise in the creation of AI are 
inspired by observations about how nature arranges itself. Deriving these solutions 
from observations about the natural world requires different world views than that of 
a computer scientist for which this problem has been previously constrained to.

	 The reason why Artificial Intelligence should have this different approach is 
due to the subset of machine learning called deep learning. In my opinion, the 
biggest difference between classical computer science and deep learning is what 
controlling a system, a model, an algorithm really means. In what most of us think of 
programming, you could imagine a programmer sitting down to solve a purely 
logical problem using a perfectly logical system, a computer. Of course the 
programmer is coding with some language, perhaps Java or Python, which is highly 
abstracted from the binary computations that are performed on the computer. The 
programmer has the feeling of having control over the problem, in that he or she 
understands the axioms that the solution must be built upon. They will trust that the 
computer will perform logically, that the computer will do exactly what it was told to 
do. I think what is fundamentally different between artificial intelligence and 
classical programming is our interpretation of control over the system. At the core 
of AI is Deep learning, where we enable a model to change its internal parameters 
and form connections about data that are not reliant on a human understanding 
them. Because the system is given this autonomy about how to arrange connections 
within networks, we lose the nice predictability we had with classical systems. 

	 Artificial neural networks make up what we know as deep learning, and as a 
common theme in this field of deep learning, we model solutions from nature. It 
says it right in the name, these neural networks are modeled after the biological 
neural networks in our brain. This is where following purely logic starts to fall apart, 
we do not know how to translate these biological systems to artificial ones because 
we do not completely understand the system. Scientists have more or less come to 
a consensus about how any particular neuron behaves. A neuron will receive some 
inputs, then perform some linear function on those inputs to produce an output. 
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This is saying that the output is proportional to the input. So programmers can in 
fact code individual neurons and connect them to other individual neurons, but 
what exactly we are trying to mimic is not so obvious. Somehow, when all of these 
easily understood functions are put together by the thousands and are 
interconnected, some intelligence arises out of the system. It is that lack of control 
over the system because of the lack of understanding about it that separates deep 
learning from the rest of the domains in computer science.

	 We understand things at a basic level, in this case neurons. Somehow, when 
they are arranged in a specific way beyond our knowledge, some intelligence of a 
higher order emerges from the system. I see this as the same difference between 
understanding neurology and psychology, or even the difference between an 
individual’s psychology and collective psychology. Neuroscientists can understand 
how things work at a neurological level, but when billions of neurons are put 
together into an interconnected web of neurons some psychology emerges that is 
beyond the intellectual domain of the neuroscientist. I think that this is what is 
happening with the computer scientist or the programmer. The programmers and 
computer scientists understand how things work at the level of algorithms and 
logical functions where there is an input and an explainable output from that input. 
When we get to the point of having thousands of these functions interconnected in 
some way, some beautiful intelligence emerges from the system. Just as the 
neuroscientist might find themselves slightly outside of their domain but rightly 
interested in the phenomenon, so does the computer scientist.

	 I am not diminishing the position of the computer scientist in deep learning, 
they have the tasks of communicating mathematics and ideas into code that the 
computer can then execute. This fundamental change in the basis of algorithms 
gives way to people with biological, psychological, or philosophical backgrounds to 
add their opinions and theories to the plethora of information that computer 
scientists can pull from. The average programmer’s job is to take an idea and 
implement it into code, the best are able to read the newest theoretical research 
papers in their respective fields and translate it into a language that a computer can 
read. A good programmer, after reading the most recently published paper can 
understand what boundary conditions that their code must satisfy, for which 
circumstances will it work under, and overall the underlying forces that make the 
system flourish.

	 I think a lot of people have really good ideas about what makes 
psychological, biological, sociological systems flourish, in their respective fields of 
course. Someone who studies evolutionary biology might have an amazing 
understanding of why certain traits come about in an environment. A sociologist 
might have an elegant and unique perspective of how certain patterns of interaction 
within cultures leads to specific group behaviors. A psychiatrist might have a theory 
about how we think, maybe how certain childhood exposure leads to the 
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development of mental illnesses later on in life. A philosopher might have these 
ideas beyond the reach of psychology about how we think, maybe about how our 
subconscious structures itself. With all of these different people’s perspectives and 
their adequate understanding of the dynamics of their respective professions, with 
the right tools could they model it? Let us say that the goal here is a human level 
intelligence, would it not be beneficial for both the person and the field of AI as a 
whole to give these geniuses tools to model their theories. After all, if the goal is to 
mimic human intelligence surely computer scientists are not the experts on how we 
as humans work. This right here is the explicit reason we need to have input from 
people outside of the computer science domain, because it is really not a computer 
science question that we are trying to answer. We need people with the 
understanding of people and their complexities to solve the problem of creating 
intelligence.

	 The most important part of coding, writing a book, playing music, is being 
able to express yourself or your ideas through it. One cannot judge Shakespeare on 
his playwriting ability from a spelling test just as one cannot judge the potential of a 
beginner programmer by how fluent they are in a coding language. Obviously, a 
good understanding of the English language was absolutely integral to Shakespeare 
being one of the best playwrights of all time. And true for amazing programmers as 
well, to reach one’s true potential it is necessary that they develop fluency in a 
language that machines can interpret. The potential of the programmer is not held 
in their ability to write code, but their ability to express their ideas through it. I think 
that people genuinely do have intellectual predispositions one way or another in the 
intellectual landscape. Different people are wired differently, this is to say that I think 
that certain types of people are drawn towards art, towards language studies, 
certain types towards physics, and certain types towards computer science, and 
many other intellectual domains of course. All of these different people however 
were probably taught how to read and write in a language even though the person 
more inclined towards language studies might have picked it up a bit faster and 
shown more initial proficiency. This does not change that the purpose of learning a 
language was to express their ideas through it, and to communicate those ideas. I 
think that we should look at coding languages the same way, although those 
inclined towards computer science may show more initial proficiency, it does not 
change the fact that the core purpose of coding is for people to express their ideas 
through it.

	 The most elegant advancements in AI have been modeled off of nature in its 
different aspects, including the creation of deep learning itself. One of my favorite 
innovations in deep learning is the Generative Adversarial Network (GAN) created by 
Yann Lecun in 2014. In a min max game, two networks work to almost outsmart each 
other. Imagine a burglar and a sheriff, they both start out really bad at their jobs, but 
as one gets better it forces the other one to. The burglar’s main objective is to not 
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get caught by the sheriff and the sheriff’s main objective is to catch the burglar. The 
burglar is forced to come up with better and better solutions as the sheriff gets 
better at his job. In the language of deep learning, the burglar is a neural network 
that generates images and the sheriff is a neural network that gets better and better 
at guessing if the images are generated from the burglar or selected from a 
preexisting set of images. It feels a bit like natural selection to me, how as the 
environment evolves and becomes more complex, the life forms must evolve to 
keep up and survive in the environment. Environment in this context means 
everything an organism might have to deal with including other species. I do not 
claim to know the motivations behind Lecun devising this method of image 
generation, but I do know that thinking about it from a biological perspective 
intuitive and useful in its own right. Perhaps more intuitive to someone who has a 
passion for biological systems and evolution rather than computer science.

	 Take a step back and think, what do we think about when we think of artificial 
intelligence? Robots. Agents that live in our world and can navigate through it, 
perhaps evil and with hidden agendas, but for now just robots designed to do 
specific tasks. What could be a solution to this problem of teaching a robot how to 
interact with an environment? Maybe a good way to deal with this problem is to 
reinforce certain behaviors, good or bad, analogous to how psychological 
reinforcement works in humans. This method of machine learning is called 
reinforcement learning, and when it learns using deep neural networks it is often 
called deep reinforcement learning. This nice connection between the psychology 
of reinforcement and the neurology from the deep neural networks is what really 
fascinates me about this field, and what inspired me to write about this for my final 
project.

	 One thing that is unavoidable in explaining something like this is 
mathematics. If you are not inclined towards mathematics or just hate math in 
general, it may be hard to keep up with what I am saying throughout, especially 
towards the end. Think of math as a bridge between intuition and code, we need 
mathematics to define particular laws and conditions for the models and 
environments, but they are representative of broader more intuitive ideas. This 
intuition may get a little bit lost in all of the calculus and greek notation, but do not 
let that stop you from thinking about it until you understand, it takes practice. For 
example a huge concept for learning a policy is a gradient, which is fairly complex 
mathematically, but a gradient is simply a way to adjust variables to most quickly 
increase or decrease some function. In the context of policy gradients it has some 
psychological intuition: in which direction can we change the way we are doing 
things right now to most quickly approach the optimal way of doing them. I will do 
my best throughout to explain the mathematics to the best of my ability, but I will 
not linger on any particular concepts for too long.
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Deep Reinforcement Learning:


	 So what exactly is reinforcement learning or deep reinforcement learning 
(DRL)? I think that there are a few ways to phrase a definition, from a psychological 
perspective to a mathematical one, but perhaps the most intuitive is the 
psychological one. Prior to the invention of computers as we think about them now, 
psychologists and behaviorists were studying the reinforcement of behaviors in 
animals as a consequence of all sorts of conditioning. One of the most influential 
American psychologists was B.F. Skinner, and the idea that he brought to the 
forefront of behavioral psychology was that behavior is determined by its 
consequences. One might look at this as an optimization of its behavior towards the 
environment to best fit the environment. Certain behaviors are enforced, these 
behaviors are those that lead to a positive response, and other actions or behaviors, 
are avoided. Pavlov’s famous experiments with his dogs in the fields of behavioral 
science have shown us that we can manipulate these biological systems with neutral 
stimuli. How exactly these stimuli become connected to experiences, and how 
exactly in our brains experiences have molded our behavior are queries not 
completely understood, and professionals in these fields will admit it too. 

	 Let’s say that we wanted to create a robot named Tim that walks around a 
world full of dangers: Lava, quicksand, or predators. This hypothetical world also has 
things in it that the robot needs to take advantage of to survive, maybe it's some 
water or food. For this robot, Tim, to be successful in the world, he must survive, 
and his performance is measured by how long he survives. Wouldn’t it be 
reasonable to design this robot's brain in a way that reinforces behaviors that lead to 
its ultimate survival. Reinforcement learning algorithms will learn how to optimally 
interact with the world in some trial and error fashion. It may take many iterations of 
the robot navigating the world, but eventually with the right RL algorithm behind it, 
the robot will develop some intelligence about how to navigate the world without 
dying. We might use deep neural networks (DNNs) as a kind of brain for the robot, 
with the mechanism of reinforcement being signals from the environment. The use 
of DNNs is more for important pattern recognition, it gives the robot a tool to distill 
important patterns from its initial high dimensional observations. This 
implementation of DNNs into the robot is called deep reinforcement learning. Before 
we go any further into this specific aspect of RL, there are some core ideas, and 
clever tricks that need to be understood prior to the main topic of the book. 

	 The general term in RL for the robot in this example is an agent, and the 
world in which the agent lives is called the environment. The words agent and 
environment are definitely reflective of their roles as a part of a RL system. The 
agent sees the environment, or a part of it, and then decides which action to take 
moving forwards. The environment will likely change as a result of this action, but 
the environment can also change independent of the agent’s action. In addition to 
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seeing a new state in the environment, the agent receives a reward. This reward is 
some number that is indicative of how good or bad the state is. Typically the agent 
has some objective to maximize the cumulative reward over the game, this is called 
the return.

	 I want to be clear for all of these definitions, you can search them up online 
to find a clear, concise, to the point definition. My purpose in writing this book is to 
spark intuition about these topics so that somebody might realize that their 
particular theories are in the applicability realm of RL or DRL. I am very well aware 
that there are many more reputable sources than myself, and those sources are 
where I learned these definitions myself. I am not here presenting myself as an 
expert, but wanting to reach a crowd not typically inclined towards computer 
science as a discipline. Because my intended audience are people who are not as 
inclined towards scientific diction and mathematics, I will prioritize the explanation 
in the domain of their intuition.


States and Observations


	 The terms state and observation are commonly interchanged, especially in 
the Spinning Up literature. However, it is important for beginners to understand the 
distinction between them to form a more full understanding of RL. A state in the 
context of RL is the entire description of the environment whatever the environment 
happens to be. An observation is either a partial or complete description of the 
state. This distinction is important when we are thinking about things with partial 
observability. In trying to teach the game of poker to a RL agent, the agent would 
have a partial observability of the state of the game. The rest of the cards in the 
players hands are still a part of the state and have consequences for future states, 
but they are unknown to the agent due to partial observability. If you think about it 
from the robot example earlier, the state would be the whole world, and the 
observation would be the part of that world the robot could see. We still must keep 
in mind that we have to translate these ideas back into things that computers can 
read, so these states and observations are often expressed by vectors, matrices, or 
tensors.

	 It can be confusing in literature what exactly the distinction is between a 
state and an observation, and the picky details really do not matter too much in the 
larger scheme of things. For example when an agent decides to take an action given 
a state, it really acts on the observation of the state and not the state itself. However 
in the context of many problems the state is identical to the observation so this 
detail may seem unnecessary. It is still good practice to  understand the difference 
of these the two ideas when thinking about it intuitively. We as humans cannot really 
know everything about a state in the environment, and it is our pursuit to strengthen 
our observation of it.
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	 A trajectory is another important term, and it is fairly self explanatory. It is a 
list of states and actions that the agent takes in a given episode of a game. The 
trajectory of an agent could look something like: state 1, action1, state2, action2 … 
up until the termination of the episode. The termination of the episode is dependent 
on whether the agent is in a terminal state, in the robot example it would be if he 
died. In a game like ping pong, a terminal state would be either the agent winning or 
having the ball pass the slider.


Action spaces


	 The action space can be thought of as the set of all possible actions. For 
PacMan, this would be something like up, down, left, or right. For ping pong it would 
be something like move the paddle up or move the paddle down. Notice that in our 
robot example it is not quite this simple, the robot has more autonomy than going 
just up, down, left, or right. The robot could choose any combination of these, and 
maybe even change its speed. Trying to put all of these possible actions into a set is 
impossible, because there are an infinite amount of actions the robot could take. 
The first case is what is called a discrete action space, and the second is a 
continuous action space. Imagine a continuous action space from trying to balance 
a ball on a platform you can control. The action you can take is often some balance 
between completely shifting the platform one way and completely shifting the 
platform another, there exists this continuum of actions that are linked through 
space. If we were to write out some table of every action for this space, discretizing 
at some very small value, changes in value would be really small for small changes 
in the action space. It is important to understand that continuous action spaces are 
of this nature because we may need to differentiate some function of how well the 
agent does with respect to the action argument. We may need to figure out how 
changes in actions would result in the change of performance.

	 You might be able to see how this could cause a problem when trying to 
figure out what the best option is given a state. This is part of what makes learning 
with continuous action spaces harder than discrete action spaces, but also more 
interesting. Further into the book, this will be brought up again, and a better 
explanation will be given. Some algorithms can only be applied to action spaces 
that are discrete, and some only for the other.

	 

Policies


	 A policy in a RL agent is just as it might sound. A way of life for the agent, a 
way for the agent to understand and deduce what action to take in a given state. 
One of the common ways to solve the problem of RL, and what a lot of this paper is 
about, is to optimize this policy in order to optimize the agent’s performance, 
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judged by the return. This can be thought of as changing the way the agent 
processes the world and acts given a situation to most efficiently increase the final 
return of the agent. There are two different types of policies, deterministic and 
stochastic.

	 The distinction between deterministic and stochastic policies is legitimately 
important to developing intuition and fluency when creating new solutions or 
implementing other people’s ideas into code. Something is deterministic if you can 
determine the outcome given an action. For example, if someone stabs someone in 
the heart you could determine with certainty that the consequence of this action 
would be death. For any philosophers or deep thinkers out there, there is this age 
old question of whether everything in life is predetermined, if humans have free will. 
Determinism is the philosophy that everything that happens, all events that have 
ever occurred and will ever occur, is predisposed to happen beyond the reach of 
our will as humans. A deterministic policy is a policy that arrives at one action with 
absolute certainty. With our robot example from earlier, a deterministic policy when 
tasked with choosing an optimal action would arrive at one particular action with 
absolute certainty. Where a deterministic policy will choose an action with certainty 
given an observation, a stochastic policy will output a probability distribution of 
actions given an observation. A stochastic policy is almost necessary for a chaotic, 
dynamical environments. Something like the stock market, where there exists 
almost a chaotic and unpredictable environment might be more easily learned from 
a stochastic policy. In a stock market-like environment, it is so much more efficient 
for the agent to learn and sample actions from a probability distribution created by a 
policy than to try to learn by picking an action with absolute certainty. 

	 With this puzzling case of having a stochastic policy output the probabilities 
of taking a given action at any state in a continuous action space we use diagonal 
gaussian policies to choose actions. Think why this might be puzzling or confusing 
at first, if there are infinitely many actions available to take, how can we sample a 
single action? At first the policy will not know which actions are optimal to the 
performance of the agent, so one might think that the probability distribution is 
fairly spread out. Remember again, that there still exists definable actions like up, 
down, left or right, and the continuous spectrum of actions lies in some 
combination of the definable actions. The two variables that define the motion of 
the robot; the first being its horizontal motion, and the second being its vertical 
motion. So instead of thinking about a continuous action space of a confusing 
infinite spectrum of values, think about it as some combination of these variables. 
For geometric intuition, imagine some two dimensional grid that is representative of 
the action space, two dimensional because there are two variables. Each point on 
the grid describes an action that is some combination of horizontal and vertical 
movement. The goal here is to kind of be able to circle an area on this action map 
given a state, and choose an action from near that circle. At the beginning of the 
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learning process, the circle from which we choose the action is large, as the agent is 
not sure as to what actions lead to good returns. However as the game progresses 
the agent learns to choose better actions by shrinking this action circle around 
certain values in the action grid. It really is not a circle per se, but a distribution 
centered around a point with some variance comparable to the radius of the circle. 
Geometric intuition is lost when there are multiple different variables at play here. 
Imagine if additional to horizontal and vertical movement, we added it being able to 
control like noise output and size. This four dimensional space doesn’t fit with our 
intuition as well. In this more complex case, there is still high uncertainty at the 
beginning, a high variance. An agent learning a policy in this case would be to find 
out what four dimensional value to center the distribution around, and become 
more and more sure by decreasing the variance around the mean of the 
distribution. 

	 There are upsides to both stochastic and deterministic policies. The upside 
to most policy optimization methods is that they work for stochastic and continuous 
cases. A deterministic policy is normally denoted by μ and a stochastic policy by π. 


Discounted returns and rewards to go


	 Remember that a return is a sum of all of the rewards across a trajectory. 
Rewards can either be positive or negative, and are the essence of reinforcement in 
agent behavior. Discounting rewards is the idea of assigning more importance to 
rewards close in the future than rewards far away. We as humans might actually do 
something similar to this, assigning values to rewards close in time rather than 
weeks away. Take for instance if someone offered you one hundred dollars how 
versus one hundred dollars a week later. Maybe in this same intuition it can be 
analogous to inflation, where literally in a few weeks that hundred dollar bill will not 
be worth as much. The agent’s perception of a future reward might be flawed and 
not as reliable as one closer in time so it would naturally make more sense to trust in 
the closer one more. In addition to this nice intuitive property, it has a very useful 
mathematical property. Sometimes we predict the return by taking an infinite sum of 
the rewards. Having a discount attached to rewards in the future ensures that the 
sum converges to a finite number.

	 In order to reduce the variance of a policy gradient, we use these rewards to 
go function instead of the entire sum or rewards. We only want the actions taken 
after the reward to factor into how the agent processes the world. This rewards to 
go function sums up the rewards from a single time step in time until the 
termination of the episode. The purpose of implementing the rewards to go, is to 
only consider the effects after an action was taking when updating the policy. If you 
remember from earlier, B.F. Skinner realized that changes in actions are a direct 
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result of their consequences in the environment. It would not make sense to treat a 
state or reward early in an episode as a consequence of a later action.


Value functions


	 Almost every RL algorithm uses some variation of a value function. A value 
function will estimate the value of taking an action in any given state. This value 
function has many different variations, there is the infinite discounted return or the 
undercounted finite horizon return. Take again the example of a robot living in some 
world, this value function would compute the value of an action by taking that 
action then determining every reward that would happen if the policy was followed. 
Given some policy π that the robot uses to map states to actions, the value function 
will give the expected return of the agent following this policy. Notice that this 
makes sense in the deterministic case, where each state gives exactly one action. In 
the stochastic case, it does not seem to make as much sense, it seems as though 
this return could have many different values because of sampling from a distribution 
of actions. Many different variations of this ‘value function’ exist in the realm of deep 
RL algorithms. There are four main types of value functions that are completely 
necessary to understand before moving forward into other deep RL topics: on-
policy value function, on-policy action-value function, optimal value function, and 
optimal value-action function. 

	 The on-policy value function is saying that with some current policy π, if we 
continue to abide by that policy the value function is the value of that current state. 
This is a great way of taking the pure value of the state so 
the agent can have another tool to construct a proper 
view of the environment. Where the on-policy value 
function is on instruction of the current policy, the 
optimal value function of a state is if the agent were to follow some optimal policy.

	 The on-policy action-value function is the infinite discounted reward return of 
taking an action, then following a given policy.  Let’s say that Tim the robot is in the 
middle of learning a policy, and we want some measure of how good an action is. Of 
course, this prediction’s legitimacy will be limited by how good the policy in place is. 
Let’s say for simplicity’s sake, the robot has a discrete action set of up, down, left, or 
right. We could estimate the value of each action like we did with just the value 
function. Additionally, much like the optimal value function, there is an optimal 

action-value function that, given any 
arbitrary action, will output a value. 
In Tim’s case, he would weigh each 
action based on the action-value 

function dependent on the current policy and assign each action some value. One 
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might imagine that if the agent knew the optimal policy it could compute the 
optimal value and the optimal action-values from any particular state.

	 One of the biggest branches of RL is called Q-learning, dealing with learning 
an optimal action-value function. Just as the optimal policy function might be 
approximated by a neural network, so can the Q function. Where the policy π is 
parameterized by the greek letter θ, the parameters in the value function are 
denoted by φ. The value of any given state is just as it might seem, how good or bad 
being in a certain state is. Winning a game might be defined simply as seeing as 
many of these high valued states as possible. You will see later that valuing a state in 
a stochastic environment, especially a complex and dynamical environment is 
challenging. A value is under a given policy, and given a stochastic policy, there are 
many different trajectories the agent could take from any state following the policy. 
The value of a state is what is expected, and is computed by taking every possible 
trajectory and weighing the return of that trajectory against it. It is infeasible, a 
waste of time, to compute all of this. Deep Q-learning uses neural network 
approximations to estimate the value or quality function.

	 Both the action-value function and the value function obey the  equation to 
the right, which when looked at can be understood without too much thought. The 
reward from a state and action added to the value function from the next state is 
equivalent to the value of the current 
state. The same is true with the Q 
function; The quality of taking any 
arbitrary action in a state is equivalent to 
the reward of that action added to the 
quality of the next state action pair. The only way in which the Q-function differs 
from the value function is that the Value function takes an action given by the policy 
and the Q function takes all possible actions and picks the best one. Q-learning is 
dependent on discrete action spaces, because it needs to compute the value 
function for states after every possible action. Policy optimization does not go the 
same route as Q learning, policy optimization attempts to solve the problem almost 
at the root.

	 In many policy gradient problems, we do not need to get an exact value for 
each state, or state action pair. What we really care about when learning a policy is 
the relative value of an action, compared to all of the other actions the agent could 
take. How good a state is in general is the value of that state, which is approximated 
using a neural network for complicated environments. We really only care about if 
taking a different action will lead us to better results than the previous set of actions 
we were taking. Subtracting the Q function from the Value function gives us this 
estimate to how much better the action is, which is called the Advantage function. 
We want to reinforce policies that give us a positive advantage function, and 
decrease those that lead to bad actions.“High-Dimensional Continuous Control 
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Using Generalized Advantage Estimation” gives a full mathematical intuition for an 
advantage estimation method called GAE. This specific advantage estimation 
function is what is used in following policy gradient algorithms.


	 

Credit assignment problem


	 The credit assignment problem is both prevalent in RL and cognitive 
sciences. For what reason did the agent get a reward, and in turn which actions can 
we change to push up the cumulative reward. This is not only a reinforcement 
learning problem, a big part of analysis in many fields is seeing which components 
of a system led to it working the way it does. 

	 I am a gymnast, if at a competition I bend my legs on the vault, fall on the 
floor, hit a perfect routine on the pommel horse, and do mediocre on everything 
else, then at the end I get some all around score. Maybe my mean score from the 
whole season is 70, if I get a 68.3 at this meet, the credit assignment problem is the 
problem of determining what exactly led to this. If I was to define rewards more 
frequently in the trajectory I could more accurately determine what led to the score 
I got and how to change my actions to benefit the final score. Let’s say I got 
feedback after each routine, a 12.4 for high bar, a 10.3 on floor, and so on. Maybe 
then I could go back to the gym and train those events especially hard to prepare 
for the next meet. Even further, there are specific things that led to the scores I got 
on each of those events, the sum of the difficulties of skills minus deductions. If I got 
a positive reward for every hard skill I did and a negative reward for every deduction, 
I would be even more equipped with knowledge to go back to the gym and train.

	 The problem with credit assignment is that we humans do not always know 
how to assign a reward to a particular state. Take chess for instance, maybe we 
could provide more frequent rewards by assigning positive rewards to taking an 
opponent’s piece, and negative rewards to losing a piece. When we think about this 
in depth, adding too many rewards may obscure the overall objective of the game. 
The agent might be focused on taking pieces while the opponent has sneakily put 
the agent into checkmate. This is the credit assignment problem, and it really boils 
down to how well humans understand systems and environments because we are 
the ones placing reward on being in states. In problems like these, where there 
needs to be a full understanding of the dynamics present in an environment, people 
well versed in their particular field will shine. This is where computer scientists do 
not have the advantage, they cannot understand a biological or a physical system 
better than a biologist or a physicist, and therefore are less equipped to assign 
rewards to states in the environment. I believe communication between all sorts of 
intellectual domains is so important to creating new technologies throughout deep 
learning.
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Temporal Difference and Monte Carlo learning 


	 In a Markov Decision Process (MDP), the future is independent of that past 
given all of the information in the present moment. This is to say that the best action 
from a given state to make in an environment is not dependent on previous actions, 
states, or rewards. For the agent to take advantage of the MDP properly, it needs to 
be able to see the whole environment, in other words the observation is the entire 
state. A flow chart would be a good example of an 
MDP, given any place that one might land on the 
flowchart there is a next step independent of how 
you got there. There might be many ways to get to 
that particular state in the flowchart, but they 
don’t influence the future. In the image to the left, 
there are three different states represented by the 
green circles and two different actions. It may not 
be obvious, but this is an MDP. Once in a state, 
regardless of how the agent might have gotten 
there, there exists a constant reward structure. An 
effective way of maximizing a score in an 
environment is learning the MDP, then taking 
actions from that particular model.

	 Maybe there is an environment, like 
blackjack, that does in fact have a MDP which structures the rewards system of the 
environment. But because the Agent cannot look at the other player’s cards, it 
cannot observe the complete MDP. These types of situations are called partially 
observable MDPs. Additionally, there are environments with no underlying MDPs, 
where the past does have a lasting impact on the future. From this, there are two 
main systems of learning: Temporal Difference learning, and Monte Carlo learning. 
Temporal Difference (TD) learning has a built in assumption that the agent is in a 
fully observable MDP. TD learning provides a learning advantage as an algorithm 
because it learns an MDP from which it can take actions. Effectively, TD learning 
learns this MDP map. Monte Carlo (MC) learning is generally less effective in a MDP 
when compared to TD because it does not take into account the properties of the 
MDP.

	 We know that MC is not as good at solving MDPs as a TD algorithm would be, 
but what exactly is MC learning? A Monte Carlo learning algorithm will learn by 
sampling from an episode. After completing an episode, or dying in a simulation, 
the agent will look back over an episode of experience, find the mean return over 
trajectories and calculate the values of states accordingly. MC is a much more 
general family of algorithms than TD is. When we do not know anything about the 
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transition qualities within the environment, we must use MC because we cannot 
assume there is a MDP. It will update the policy after the entire trajectory is stored in 
memory, at the termination of the episode. Where MC will wait until the end of the 
episode, temporal difference helps develop a fuller picture for the dynamic of the 
environment by updating throughout the episode. Let’s say that we are measuring 
the weather over time in Dallas. We have an alright model about how to predict the 
weather a few weeks into the future, let's say our goal is to predict the weather for 
week three using this model. It is week one right now, but we can actually change 
our model sometime during week two because the weather in week two tells us 
something about the weather in week three. These intermediate changes of the 
model are what make TD learning successful. 

	 In TD learning, there is this concept of an error for each time step, often 
represented as δ. This error holds the information about how for how close the value 
approximation is to the reward structure in the environment. The value of state two 
should be equal to the value of state one plus the reward from state one. Minimizing 
this difference, the TD error, is how the value function will approximate the true 
value function of the environment. 


Policy Optimization


	 How exactly we make a policy optimization algorithm is difficult. The general 
flow of ideas generally looks something like observations about the world or 
humans, the formulation of mathematical relationships between them, manipulation 
of formulas to work, and finally the translation of mathematics into something a 
computer is able to read. One of these ideas about how to optimize learning is 
called a policy gradient, a way that the artificial neurons in the deep neural policy 
network change themselves to most quickly change the behavior of the policy. 
Imagine it as many small steps shifting the parameters of the policy function closer 
and closer to an optimal policy. 

	 Most deep neural networks are trained using gradient descent and are 
guided by some loss function. If a convolutional neural network, a type of DNN, is 
used for classifying images into different kinds of birds, the loss function would be 
some metric that tells the last layer of the net how wrong it is. Remember that the 
last layer is where all of the neurons come together to form some conclusions about 
the input. After the network is told how wrong it was in its conclusion, by stochastic 

gradient descent the network tunes all of its 
parameters in a direction that most quickly 
decreases the loss function. For this problem 
of birds, you might imagine some 
predefined solution space that exists for the 
problem at hand. With our neural network, 
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we are able to  navigate through this high dimensional solution space, and 
approximate solutions by stepping towards a minimum of the loss function. This 
notion of approximation and not perfection is important to keep in mind, and it 
explains why we need things like a very small learning rate, as not to overstep this 
preexisting function that we are navigating. In this colorful image to the right from 
sciencemag.org, you might image this as a solution to a neural network with two 
parameters. Each combination of these parameters has a corresponding loss value, 
maybe how accurate it is in classifying some phenomenon. For every instance, 
every place in time, the parameters of the net are at one point in this solution space, 
and we are able to calculate the direction to move these two parameters to most 
quickly decrease the loss value of the parameters. Imagine you are an ant in a 
complex, hilly, cloudy environment and you want to get down the hill. You can see 
what is exactly in front of you, but no further. In this intuition, being the ant you 
would not want to walk for too long before looking again, because the environment 
will change. This is the gradient, it tells part of the story of the shape of the solution 
specifically a direction but nothing else.

	 In real problems, this is not a three dimensional space with only two 
parameters, it is likely a space with a few hundred dimensions. Although this might 
be hard to wrap your head around, understand that the idea of computing a 
gradient does not really change when more dimensions are added. In a policy 
network or a classifier network, there are still local minimums and maximums in the 
space of all different combinations of the parameters. Convergence means that we 
find one of these minimums or maximums. Take for instance, a network’s 
parameters are in a local minimum, this makes the gradient zero and that point, 
meaning that any movement will increase the loss function. But does this mean that 
we have found the absolute best set of parameters to solve the problem? No. What 
we have converged upon is a local minimum, meaning that there might be dips in 
parameter space that have a lower loss value than the minimum we found. In 
machine learning terms, the process of approaching a local minimum is called 
training a network. When we begin the process of training we randomly initialize the 
parameters in the network, normally according to a normal distribution. This 
initialization corresponds to some loss value, and more importantly a different local 
shape of the loss function we attempt to solve. This is why, with the exact same 
gradient descent algorithm we can reach vastly different solutions for the same 
problem with different initializations. We assume that this loss function is always 
continuous and differentiable with respect to the loss. Given enough steps for a 
classifier and properly labeled data, gradient descent will converge on a set of 
parameters given any arbitrary initialization of parameters. For this reason it is 
important to do more than one trial to diagnose the effectiveness of an algorithm.

	 There are a few big differences between a policy network in a RL agent, and 
the typical DNNs you might see in a classifier. The goal is to minimize some function 
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in a classifier, to apply gradient descent iteratively in order to approach an optimal 
solution. In RL, the primary purpose is to maximize a score function dependent on 
the policy, not to minimize an error. Gradient ascent is taking steps to maximize a 
function where gradient descent is taking steps to minimize one. Just as we might 
measure the performance of a classifier with L(θ), we measure the performance of a 
policy with the infinite discounted sum of rewards from a given trajectory under π, 
called J(θ). This really is not as complicated as it might sound. Given the current 
policy we have, we measure how good this policy is by collecting the expected sum 
of the rewards, which we call the expected return. This should be a fairly clear 
concept, easily grasped. We want to capture this idea of an expectation in the 
language of mathematics; given this policy π what is the expected value of a state 
over the trajectory. The “E” symbol means an expectation and the π as a subscript 
means it is an exception under π. This expectation functional takes a weighted 
average of whatever variables are calculating the expectation of. This weighted 
average weights the return of a trajectory by the strength of the probability of that 
trajectory actually happening: π(τ;θ). π(τ;θ) being the probability of taking trajectory 
τ given the current parameters θ with policy π. So summing the essence of an 
expectation up, it is weighing the return of every trajectory on the basis of how likely 
it is to occur given the current policy parameters, and giving the sum of all of them. 
There are many different ways this trajectory could lay out, different actions and 
consequently different states, remember this is due to the stochastic nature of the 
policy. Note that the expectation is not a function, but a functional because it takes 
functions as inputs and outputs a series of random variables. A fair amount of 
mathematics, and an even greater amount of math relating to RL, has the property 
of taking intuitive ideas like expectation and defining them mathematically so that 
computers may use them. I think that anyone can have a pretty full understanding of 
the expectation function when pondering on it for a long enough time.

	 Let’s think a little bit more about what taking a gradient means in the context 
of the expected return. What effects does changing the parameters of the policy 
have on the performance exactly? Well it is certain that there will be a different 
action distribution, and this different action distribution will certainly lead to a 
different state distribution. With changes to the policy, there are changes in the 
state distribution, therefore the gradient of the performance should really account 
for how the state distribution changes. Now arises the issue that the function of the 
environment is unknown, we simply cannot predict what exact changes to the state 
distribution given a change in the action distribution. There is an essential part of 
the dynamics of the return we must ignore to derive a policy gradient, which is why 
we must tread extremely carefully when making updates to the policy. To find a 
gradient and step in that direction is a linear approximation, which becomes more 
inaccurate for larger steps. Adding on top of this inaccuracy for higher steps is the 
uncertainty in how the state distribution will change, and larger and larger steps will 
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continue to increase that uncertainty. Keep this in mind as we move forward with 
finding the policy gradient.

	 Follow along with my explanation, and the mathematical derivation of the 
policy gradient. Step one is to define the performance, J(θ), as some expected value 
under x of ƒ(x). Step two is to expand the expectation in its integral form, this 
integral creates a weighted ‘sum’ of ƒ(x), which will represent the trajectory. After 
this, we move  the gradient inside the integral as you see in step three. It is not 
optimal to have to compute the gradient over the probability p(x;θ) for a few 
reasons. First of all, we would like to convert this 
back into an expectation eventually, so we need 
a standalone probability distribution under π 
without the gradient. Secondly, it is 
mathematically extraneous, and when doing 
these calculations on a computer, a huge 
number of small probabilities accounts for a lot 
of the imprecision that comes naturally with float 
point numbers. Taking the gradient of the 
logarithm probability distribution actually solves 
both of these problems. The logarithmic is more numerically stable for computers, it 
keeps values from rapidly approaching zero which otherwise might result in some 
error. If the gradient of an argument is divided by that argument, it is equal to the 
gradient of the logarithm of that argument. This actually takes care of being able to 
convert the integral back into an expectation. In step 5, it is shown that the final 
gradient J can be written as an expectation under the policy.

	 This is a linear model of learning, meaning that for any instance of J(θ), we 
have expanded our vision just a bit to see what moving in any direction will do to the 
overall reward function. This is only accurate within a short time step because a 
linear approximation is not really a good estimation of the function. These iterative 
steps become more and more inaccurate as we increase the learning rate, α, off the 
function not only because the linear approximation is inaccurate for big steps, and 

with the uncertainty of the change in the state 
distribution. Recall from earlier that the state 
distribution has a significant effect on the reward, and 

this policy gradient derivation is not involved in the 
stated distribution. Because the  function of the environment is unknown, there is 
uncertainty with how the state distribution will change. If the agent updates its 
policy by too much it can be detrimental to the success of the agent. The agent’s 
policy is attempting to climb this hill in parameter space, and taking too large of a 
step is being thrown off of that hill. The agent might see states totally different to 
what it has been seeing, and the value of these states might be much lower than 
previously. This limits the policy updates to an extremely small learning rate, which 
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has the effect of slowing learning down considerably and makes scaling up to more 
complex environments unrealistic. The essence of trust region policy optimization 
and proximal policy optimization is to solve this problem by defining how far is safe 
for the policy to update.

 

A simple policy gradient


	 Mathematics is nice, pretty, accounting for things like infinite integrals. 
Translating ideas from the theoretical language of math into very real applications in 
code forces us to come up with solutions. These solutions are beautiful, the use of 
neural networks as function approximation for the value and policy functions, 
transforming theoretical ideas in math into tangible things that a computer can do. 
Something that might have not been so obvious earlier is that in fact we do need a 
neural network for the value function. It doesn’t necessarily need to be a value 
function per se, it could be any measurement of how good a state is. Denoted with 
parameters φ, the value function is trained to approximate the rewards-to-go from 
any given state. Trained with your typical gradient descent algorithm, it attempts to 
minimize mean squared error between rewards to go and the old value function. 
While the policy network learns how to assign actions to states, the value network 
will learn how to assign values to states. You will see how these two networks work 
together to solve problems.

	 If learning python sounds like something that you might want to get into, I 
encourage you to go look into my code in my GitHub repository: "https://
github.com/jackmcgaughey/reinforcement_learning". I think looking at code and 
trying to understand it is very helpful in understanding what is necessary to writing 
code. There are so many technicalities in programming, data types that only work 
with specific things. Sometime things will not work because the wrong type of list or 
array was used, and the only way to get over this hump is to simply put in the time 
and effort to learning.

	 Actor-Critic is a simple way to combine policy gradients and value functions. 
It consists of two main components which hold neural networks, the actor and the 
critic. The actor takes steps given what the critic has to say about any state. Looking 
back to the derivation of the policy gradient, this term R(τ) is what serves to signify 
if the trajectory taken was good or bad, then the parameters are updated 
accordingly. An approximation for the expected return is the critic, and fittingly so, it 
critiques how good or bad a policy is on the basis of its trajectory. The critic is not 
always specific to being the expected return, it serves the purpose of being a critic 
in whatever way might be most beneficial to the algorithm as a whole. You could see 
the critic as an Advantage function as discussed earlier, a Q function, or a value 
function. The actor receives this information from the critic about how good the 
trajectory was under the current policy. The actor then takes steps to change the 
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parameters of the policy function in a way that moves the agent towards taking a 
better, higher valued trajectory. What is nice about this Actor-Critic architecture, is 
that it's really easy to understand and read in python, because most of the time they 
will have separate classes.

	 In my GitHub repo, you can find my implementations of the algorithms I did 
and even run them yourself if you want to. For the first one, I used an Actor-Critic 
architecture, and designed the algorithm for temporal difference learning. The 
environment that the agent played in is called  continuous mountain climber. The 
goal of the game is to reach the top of the hill, but the only 
way the agent is able to accomplish this, is if it swings back 
and gains momentum to make its way up the hill. A funny 
thing happened when running my algorithm is that it never 
actually got a score above zero. This just goes to 
demonstrate that the agent’s method of optimization might 
not be exactly the most optimal solution you had in your 
head. Instead of maximizing a positive score by reaching the 
top of the hill, the agent minimizes negative reward. The 
agent just sits at the bottom of the hill and tries to move as little as possible, this is 
how it creates an optimal solution to the environment. This temporal difference 
algorithm keeps track at every time step of how far the value estimate is from the 
reward given, and it attempts to minimize this loss over time.

	 Instead of fitting a neural network to be the value function, another method 
is to simply sample off of the environment to learn. This algorithm called REINFORCE 
is the second algorithm I wrote out in code, and it does not use a second neural 
network for the value function. I decided to try a different environment for my 
implementation of REINFORCE. 
From open AI’s gym, I chose the 
classic Cart Pole environment. The 
goal for the agent is to balance the 
pole on top of the cart, which the 
agent has control over. Firstly, I 
collected the trajectories of the 
episodes; the observations, 
actions, and rewards. After 
calculating the discounted 
rewards to go, I used the policy 
gradient theorem to calculate the 
gradient. The agent was able to 
solve the environment, achieving a 
max score of 200 points after about 300 episodes consistently. To the right here is a 
graph of episodes versus the reward over that episode. It is evident that the agent is 
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learning how to maximize its score in the environment in that over episodes, the 
total reward goes up. It levels out when the reward reaches 200 because that is the 
maximum reward the agent can have. So what does solving the environment 
actually look like? It looks like balancing the pole on the cart for the whole length of 
the episode, for a good visual representation go to this YouTube link: “https://
www.youtube.com/watch?v=ooOA0q2skmE". 


Other methods of policy optimization


	 If you take a look at either one of my scripts in my repository, you’ll see how 
low the learning rates are. I mentioned this problem earlier, these algorithms are 
very unstable for larger learning rates. What TRPO and PPO do, is they define 
boundaries for how far the policy can update given the current policy. Making too 
large of an update in parameter space can completely knock the agent off of the 
path it was learning on. It is comparable to climbing up a rocky, steep, dangerous 
hill. Just looking at the equations for normal policy gradients, by taking the gradient 
of the expected return with respect to the parameters of the neural network the 
direction to update is decided, and then the step is taken. The step size, α, is 
predetermined and the same regardless of the policy. In trust region policy 
optimization, the maximum step size is determined, then the optimal direction to 
step in is determined. But why is this method better in terms of updating policies? 
Partially because it is dynamic, the agent can change the size of this trust region 
based on the performance of the policy at any given time. The new policy, after an 
update, should not be too different than the old one.

	 What size the trust region should be is the main problem TRPO and PPO 
solves. Remember one of the key problems with updating too much is the change in 
the state distribution as a consequence of changes in the action distribution. If the 
rewards structure of the environment is an unknown, which often it is, then there is 
no known transition model for states. The policy’s effect on the action distribution is 
derivable, but the policy’s effect on the states the agent sees is not. The policy 
gradient theorem is quite a clever trick in the sense that it provides a derivation of 
the performance with respect to the parameters without differentiating the state 
distribution. TRPO and PPO (in some instances) measure the divergence between 
the old policy and the new policy in terms of the state distributions. I got this image 
to the right from Open AI’s spinning up documentation, an amazing and helpful site 
for learning about policy optimization. This 
divergence is a KL-divergence, which is a 
measurement of the “distance” between 
two distributions. In this case, the KL-
divergence is measuring how different the state distributions under policy π with the 
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new and old parameters θ. This dynamic safety measurement keeps the agent from 
overstepping in parameter space. 

	 If the update safety net is expressed in terms of the KL-divergence, then 
there must be a measurement of how good or bad the new policy is. By using the 
same data collected under the old policy, the performance between the new and 

old policies are compared by dividing new 
by the end. Taking the expectation of the 
product of the comparison term and the 
advantage function for given actions and 
states, gives the expression of the 

surrogate advantage. To the right, also from 
the spinning up documentation might be a bit easier to understand. Think of the KL-
divergence term as a kind of a constraint to the surrogate advantage. But to be a 
constraint, it would need to be constrained to some value. This KL-divergence term 
must be less than some value. So all and all, a perfect TRPO update would find the 
best set of parameters θ which maximized the surrogate advantage but the KL-
divergence limit condition is still satisfied. 

	 Theoretically, this is great and easy to understand. But implementing this into 
code… is quite a challenge, and a reason why I didn’t include it in this paper. 
Basically, it involves approximating the surrogate advantage and the divergence 
using a Taylor series expansion. If you really feel like you want to dive into the math, 
then I recommend reading Trust Region Policy Optimization by Schulman. There is 
about five pages of math, too complicated for me to sit and sift through. What is 
more feasible to workout and write into code is the Proximal Policy Optimization 
algorithm.

	 PPO solves the same problem that TRPO solves, but in a first order way. There 
are technically two different PPO methods, there is the KL-divergence penalty and 
the clipped advantage. The one most easy to understand, and the one which is used 
the most is the PPO-clip. PPO has no need for this measurement between 
distributions made by the policy, it has no KL-divergence term, PPO limits moving 
too far away from previous policies in a different way. Still it is help to visualize this 
as making some sphere of how far or close the policy is allowed to update. There is 
a structure of clipping this objective function that constrains how far it can update, 
it creates a boundary. It will be allowed to update to anything under this condition, 
and the algorithms are structured in a really simple and easy to understand fashion. 
There is somewhat of a ceiling, that does not reward or incentivize going past this 
ceiling.
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