
Deep Reinforcement Learning

A beginner’s guide to policy optimization

Jack McGaughey

April 16, 2021

McGaughey 1

	 As a beginner that has just begun to see the complexities that the fields of
Machine Learning and Artificial Intelligence have in store, it is clear that we need
brilliant minds from many perspectives pondering into it. With this exponential
technological growth in our computational power added with the intellect of the
pioneers in deep learning, it is increasingly important for people across disciplines
to learn about AI and its capabilities. My goal throughout my career will be to show
people that computer science has much more potential than it might look like.
Studying artificial intelligence and deep learning is more than the complex math
symbols and confusing code; but philosophies of learning, studying biological
systems in nature, and bringing ideas from many scientific domains to solve the
problems in AI. The solutions to the problems that arise in the creation of AI are
inspired by observations about how nature arranges itself. Deriving these solutions
from observations about the natural world requires different world views than that of
a computer scientist for which this problem has been previously constrained to.

	 The reason why Artificial Intelligence should have this different approach is
due to the subset of machine learning called deep learning. In my opinion, the
biggest difference between classical computer science and deep learning is what
controlling a system, a model, an algorithm really means. In what most of us think of
programming, you could imagine a programmer sitting down to solve a purely
logical problem using a perfectly logical system, a computer. Of course the
programmer is coding with some language, perhaps Java or Python, which is highly
abstracted from the binary computations that are performed on the computer. The
programmer has the feeling of having control over the problem, in that he or she
understands the axioms that the solution must be built upon. They will trust that the
computer will perform logically, that the computer will do exactly what it was told to
do. I think what is fundamentally different between artificial intelligence and
classical programming is our interpretation of control over the system. At the core
of AI is Deep learning, where we enable a model to change its internal parameters
and form connections about data that are not reliant on a human understanding
them. Because the system is given this autonomy about how to arrange connections
within networks, we lose the nice predictability we had with classical systems.

	 Artificial neural networks make up what we know as deep learning, and as a
common theme in this field of deep learning, we model solutions from nature. It
says it right in the name, these neural networks are modeled after the biological
neural networks in our brain. This is where following purely logic starts to fall apart,
we do not know how to translate these biological systems to artificial ones because
we do not completely understand the system. Scientists have more or less come to
a consensus about how any particular neuron behaves. A neuron will receive some
inputs, then perform some linear function on those inputs to produce an output.

McGaughey 2

This is saying that the output is proportional to the input. So programmers can in
fact code individual neurons and connect them to other individual neurons, but
what exactly we are trying to mimic is not so obvious. Somehow, when all of these
easily understood functions are put together by the thousands and are
interconnected, some intelligence arises out of the system. It is that lack of control
over the system because of the lack of understanding about it that separates deep
learning from the rest of the domains in computer science.

	 We understand things at a basic level, in this case neurons. Somehow, when
they are arranged in a specific way beyond our knowledge, some intelligence of a
higher order emerges from the system. I see this as the same difference between
understanding neurology and psychology, or even the difference between an
individual’s psychology and collective psychology. Neuroscientists can understand
how things work at a neurological level, but when billions of neurons are put
together into an interconnected web of neurons some psychology emerges that is
beyond the intellectual domain of the neuroscientist. I think that this is what is
happening with the computer scientist or the programmer. The programmers and
computer scientists understand how things work at the level of algorithms and
logical functions where there is an input and an explainable output from that input.
When we get to the point of having thousands of these functions interconnected in
some way, some beautiful intelligence emerges from the system. Just as the
neuroscientist might find themselves slightly outside of their domain but rightly
interested in the phenomenon, so does the computer scientist.

	 I am not diminishing the position of the computer scientist in deep learning,
they have the tasks of communicating mathematics and ideas into code that the
computer can then execute. This fundamental change in the basis of algorithms
gives way to people with biological, psychological, or philosophical backgrounds to
add their opinions and theories to the plethora of information that computer
scientists can pull from. The average programmer’s job is to take an idea and
implement it into code, the best are able to read the newest theoretical research
papers in their respective fields and translate it into a language that a computer can
read. A good programmer, after reading the most recently published paper can
understand what boundary conditions that their code must satisfy, for which
circumstances will it work under, and overall the underlying forces that make the
system flourish.

	 I think a lot of people have really good ideas about what makes
psychological, biological, sociological systems flourish, in their respective fields of
course. Someone who studies evolutionary biology might have an amazing
understanding of why certain traits come about in an environment. A sociologist
might have an elegant and unique perspective of how certain patterns of interaction
within cultures leads to specific group behaviors. A psychiatrist might have a theory
about how we think, maybe how certain childhood exposure leads to the

McGaughey 3

development of mental illnesses later on in life. A philosopher might have these
ideas beyond the reach of psychology about how we think, maybe about how our
subconscious structures itself. With all of these different people’s perspectives and
their adequate understanding of the dynamics of their respective professions, with
the right tools could they model it? Let us say that the goal here is a human level
intelligence, would it not be beneficial for both the person and the field of AI as a
whole to give these geniuses tools to model their theories. After all, if the goal is to
mimic human intelligence surely computer scientists are not the experts on how we
as humans work. This right here is the explicit reason we need to have input from
people outside of the computer science domain, because it is really not a computer
science question that we are trying to answer. We need people with the
understanding of people and their complexities to solve the problem of creating
intelligence.

	 The most important part of coding, writing a book, playing music, is being
able to express yourself or your ideas through it. One cannot judge Shakespeare on
his playwriting ability from a spelling test just as one cannot judge the potential of a
beginner programmer by how fluent they are in a coding language. Obviously, a
good understanding of the English language was absolutely integral to Shakespeare
being one of the best playwrights of all time. And true for amazing programmers as
well, to reach one’s true potential it is necessary that they develop fluency in a
language that machines can interpret. The potential of the programmer is not held
in their ability to write code, but their ability to express their ideas through it. I think
that people genuinely do have intellectual predispositions one way or another in the
intellectual landscape. Different people are wired differently, this is to say that I think
that certain types of people are drawn towards art, towards language studies,
certain types towards physics, and certain types towards computer science, and
many other intellectual domains of course. All of these different people however
were probably taught how to read and write in a language even though the person
more inclined towards language studies might have picked it up a bit faster and
shown more initial proficiency. This does not change that the purpose of learning a
language was to express their ideas through it, and to communicate those ideas. I
think that we should look at coding languages the same way, although those
inclined towards computer science may show more initial proficiency, it does not
change the fact that the core purpose of coding is for people to express their ideas
through it.

	 The most elegant advancements in AI have been modeled off of nature in its
different aspects, including the creation of deep learning itself. One of my favorite
innovations in deep learning is the Generative Adversarial Network (GAN) created by
Yann Lecun in 2014. In a min max game, two networks work to almost outsmart each
other. Imagine a burglar and a sheriff, they both start out really bad at their jobs, but
as one gets better it forces the other one to. The burglar’s main objective is to not

McGaughey 4

get caught by the sheriff and the sheriff’s main objective is to catch the burglar. The
burglar is forced to come up with better and better solutions as the sheriff gets
better at his job. In the language of deep learning, the burglar is a neural network
that generates images and the sheriff is a neural network that gets better and better
at guessing if the images are generated from the burglar or selected from a
preexisting set of images. It feels a bit like natural selection to me, how as the
environment evolves and becomes more complex, the life forms must evolve to
keep up and survive in the environment. Environment in this context means
everything an organism might have to deal with including other species. I do not
claim to know the motivations behind Lecun devising this method of image
generation, but I do know that thinking about it from a biological perspective
intuitive and useful in its own right. Perhaps more intuitive to someone who has a
passion for biological systems and evolution rather than computer science.

	 Take a step back and think, what do we think about when we think of artificial
intelligence? Robots. Agents that live in our world and can navigate through it,
perhaps evil and with hidden agendas, but for now just robots designed to do
specific tasks. What could be a solution to this problem of teaching a robot how to
interact with an environment? Maybe a good way to deal with this problem is to
reinforce certain behaviors, good or bad, analogous to how psychological
reinforcement works in humans. This method of machine learning is called
reinforcement learning, and when it learns using deep neural networks it is often
called deep reinforcement learning. This nice connection between the psychology
of reinforcement and the neurology from the deep neural networks is what really
fascinates me about this field, and what inspired me to write about this for my final
project.

	 One thing that is unavoidable in explaining something like this is
mathematics. If you are not inclined towards mathematics or just hate math in
general, it may be hard to keep up with what I am saying throughout, especially
towards the end. Think of math as a bridge between intuition and code, we need
mathematics to define particular laws and conditions for the models and
environments, but they are representative of broader more intuitive ideas. This
intuition may get a little bit lost in all of the calculus and greek notation, but do not
let that stop you from thinking about it until you understand, it takes practice. For
example a huge concept for learning a policy is a gradient, which is fairly complex
mathematically, but a gradient is simply a way to adjust variables to most quickly
increase or decrease some function. In the context of policy gradients it has some
psychological intuition: in which direction can we change the way we are doing
things right now to most quickly approach the optimal way of doing them. I will do
my best throughout to explain the mathematics to the best of my ability, but I will
not linger on any particular concepts for too long.

McGaughey 5

Deep Reinforcement Learning:

	 So what exactly is reinforcement learning or deep reinforcement learning
(DRL)? I think that there are a few ways to phrase a definition, from a psychological
perspective to a mathematical one, but perhaps the most intuitive is the
psychological one. Prior to the invention of computers as we think about them now,
psychologists and behaviorists were studying the reinforcement of behaviors in
animals as a consequence of all sorts of conditioning. One of the most influential
American psychologists was B.F. Skinner, and the idea that he brought to the
forefront of behavioral psychology was that behavior is determined by its
consequences. One might look at this as an optimization of its behavior towards the
environment to best fit the environment. Certain behaviors are enforced, these
behaviors are those that lead to a positive response, and other actions or behaviors,
are avoided. Pavlov’s famous experiments with his dogs in the fields of behavioral
science have shown us that we can manipulate these biological systems with neutral
stimuli. How exactly these stimuli become connected to experiences, and how
exactly in our brains experiences have molded our behavior are queries not
completely understood, and professionals in these fields will admit it too.

	 Let’s say that we wanted to create a robot named Tim that walks around a
world full of dangers: Lava, quicksand, or predators. This hypothetical world also has
things in it that the robot needs to take advantage of to survive, maybe it's some
water or food. For this robot, Tim, to be successful in the world, he must survive,
and his performance is measured by how long he survives. Wouldn’t it be
reasonable to design this robot's brain in a way that reinforces behaviors that lead to
its ultimate survival. Reinforcement learning algorithms will learn how to optimally
interact with the world in some trial and error fashion. It may take many iterations of
the robot navigating the world, but eventually with the right RL algorithm behind it,
the robot will develop some intelligence about how to navigate the world without
dying. We might use deep neural networks (DNNs) as a kind of brain for the robot,
with the mechanism of reinforcement being signals from the environment. The use
of DNNs is more for important pattern recognition, it gives the robot a tool to distill
important patterns from its initial high dimensional observations. This
implementation of DNNs into the robot is called deep reinforcement learning. Before
we go any further into this specific aspect of RL, there are some core ideas, and
clever tricks that need to be understood prior to the main topic of the book.

	 The general term in RL for the robot in this example is an agent, and the
world in which the agent lives is called the environment. The words agent and
environment are definitely reflective of their roles as a part of a RL system. The
agent sees the environment, or a part of it, and then decides which action to take
moving forwards. The environment will likely change as a result of this action, but
the environment can also change independent of the agent’s action. In addition to

McGaughey 6

seeing a new state in the environment, the agent receives a reward. This reward is
some number that is indicative of how good or bad the state is. Typically the agent
has some objective to maximize the cumulative reward over the game, this is called
the return.

	 I want to be clear for all of these definitions, you can search them up online
to find a clear, concise, to the point definition. My purpose in writing this book is to
spark intuition about these topics so that somebody might realize that their
particular theories are in the applicability realm of RL or DRL. I am very well aware
that there are many more reputable sources than myself, and those sources are
where I learned these definitions myself. I am not here presenting myself as an
expert, but wanting to reach a crowd not typically inclined towards computer
science as a discipline. Because my intended audience are people who are not as
inclined towards scientific diction and mathematics, I will prioritize the explanation
in the domain of their intuition.

States and Observations

	 The terms state and observation are commonly interchanged, especially in
the Spinning Up literature. However, it is important for beginners to understand the
distinction between them to form a more full understanding of RL. A state in the
context of RL is the entire description of the environment whatever the environment
happens to be. An observation is either a partial or complete description of the
state. This distinction is important when we are thinking about things with partial
observability. In trying to teach the game of poker to a RL agent, the agent would
have a partial observability of the state of the game. The rest of the cards in the
players hands are still a part of the state and have consequences for future states,
but they are unknown to the agent due to partial observability. If you think about it
from the robot example earlier, the state would be the whole world, and the
observation would be the part of that world the robot could see. We still must keep
in mind that we have to translate these ideas back into things that computers can
read, so these states and observations are often expressed by vectors, matrices, or
tensors.

	 It can be confusing in literature what exactly the distinction is between a
state and an observation, and the picky details really do not matter too much in the
larger scheme of things. For example when an agent decides to take an action given
a state, it really acts on the observation of the state and not the state itself. However
in the context of many problems the state is identical to the observation so this
detail may seem unnecessary. It is still good practice to understand the difference
of these the two ideas when thinking about it intuitively. We as humans cannot really
know everything about a state in the environment, and it is our pursuit to strengthen
our observation of it.

McGaughey 7

	 A trajectory is another important term, and it is fairly self explanatory. It is a
list of states and actions that the agent takes in a given episode of a game. The
trajectory of an agent could look something like: state 1, action1, state2, action2 …
up until the termination of the episode. The termination of the episode is dependent
on whether the agent is in a terminal state, in the robot example it would be if he
died. In a game like ping pong, a terminal state would be either the agent winning or
having the ball pass the slider.

Action spaces

	 The action space can be thought of as the set of all possible actions. For
PacMan, this would be something like up, down, left, or right. For ping pong it would
be something like move the paddle up or move the paddle down. Notice that in our
robot example it is not quite this simple, the robot has more autonomy than going
just up, down, left, or right. The robot could choose any combination of these, and
maybe even change its speed. Trying to put all of these possible actions into a set is
impossible, because there are an infinite amount of actions the robot could take.
The first case is what is called a discrete action space, and the second is a
continuous action space. Imagine a continuous action space from trying to balance
a ball on a platform you can control. The action you can take is often some balance
between completely shifting the platform one way and completely shifting the
platform another, there exists this continuum of actions that are linked through
space. If we were to write out some table of every action for this space, discretizing
at some very small value, changes in value would be really small for small changes
in the action space. It is important to understand that continuous action spaces are
of this nature because we may need to differentiate some function of how well the
agent does with respect to the action argument. We may need to figure out how
changes in actions would result in the change of performance.

	 You might be able to see how this could cause a problem when trying to
figure out what the best option is given a state. This is part of what makes learning
with continuous action spaces harder than discrete action spaces, but also more
interesting. Further into the book, this will be brought up again, and a better
explanation will be given. Some algorithms can only be applied to action spaces
that are discrete, and some only for the other.

	

Policies

	 A policy in a RL agent is just as it might sound. A way of life for the agent, a
way for the agent to understand and deduce what action to take in a given state.
One of the common ways to solve the problem of RL, and what a lot of this paper is
about, is to optimize this policy in order to optimize the agent’s performance,

McGaughey 8

judged by the return. This can be thought of as changing the way the agent
processes the world and acts given a situation to most efficiently increase the final
return of the agent. There are two different types of policies, deterministic and
stochastic.

	 The distinction between deterministic and stochastic policies is legitimately
important to developing intuition and fluency when creating new solutions or
implementing other people’s ideas into code. Something is deterministic if you can
determine the outcome given an action. For example, if someone stabs someone in
the heart you could determine with certainty that the consequence of this action
would be death. For any philosophers or deep thinkers out there, there is this age
old question of whether everything in life is predetermined, if humans have free will.
Determinism is the philosophy that everything that happens, all events that have
ever occurred and will ever occur, is predisposed to happen beyond the reach of
our will as humans. A deterministic policy is a policy that arrives at one action with
absolute certainty. With our robot example from earlier, a deterministic policy when
tasked with choosing an optimal action would arrive at one particular action with
absolute certainty. Where a deterministic policy will choose an action with certainty
given an observation, a stochastic policy will output a probability distribution of
actions given an observation. A stochastic policy is almost necessary for a chaotic,
dynamical environments. Something like the stock market, where there exists
almost a chaotic and unpredictable environment might be more easily learned from
a stochastic policy. In a stock market-like environment, it is so much more efficient
for the agent to learn and sample actions from a probability distribution created by a
policy than to try to learn by picking an action with absolute certainty.

	 With this puzzling case of having a stochastic policy output the probabilities
of taking a given action at any state in a continuous action space we use diagonal
gaussian policies to choose actions. Think why this might be puzzling or confusing
at first, if there are infinitely many actions available to take, how can we sample a
single action? At first the policy will not know which actions are optimal to the
performance of the agent, so one might think that the probability distribution is
fairly spread out. Remember again, that there still exists definable actions like up,
down, left or right, and the continuous spectrum of actions lies in some
combination of the definable actions. The two variables that define the motion of
the robot; the first being its horizontal motion, and the second being its vertical
motion. So instead of thinking about a continuous action space of a confusing
infinite spectrum of values, think about it as some combination of these variables.
For geometric intuition, imagine some two dimensional grid that is representative of
the action space, two dimensional because there are two variables. Each point on
the grid describes an action that is some combination of horizontal and vertical
movement. The goal here is to kind of be able to circle an area on this action map
given a state, and choose an action from near that circle. At the beginning of the

McGaughey 9

learning process, the circle from which we choose the action is large, as the agent is
not sure as to what actions lead to good returns. However as the game progresses
the agent learns to choose better actions by shrinking this action circle around
certain values in the action grid. It really is not a circle per se, but a distribution
centered around a point with some variance comparable to the radius of the circle.
Geometric intuition is lost when there are multiple different variables at play here.
Imagine if additional to horizontal and vertical movement, we added it being able to
control like noise output and size. This four dimensional space doesn’t fit with our
intuition as well. In this more complex case, there is still high uncertainty at the
beginning, a high variance. An agent learning a policy in this case would be to find
out what four dimensional value to center the distribution around, and become
more and more sure by decreasing the variance around the mean of the
distribution.

	 There are upsides to both stochastic and deterministic policies. The upside
to most policy optimization methods is that they work for stochastic and continuous
cases. A deterministic policy is normally denoted by μ and a stochastic policy by π.

Discounted returns and rewards to go

	 Remember that a return is a sum of all of the rewards across a trajectory.
Rewards can either be positive or negative, and are the essence of reinforcement in
agent behavior. Discounting rewards is the idea of assigning more importance to
rewards close in the future than rewards far away. We as humans might actually do
something similar to this, assigning values to rewards close in time rather than
weeks away. Take for instance if someone offered you one hundred dollars how
versus one hundred dollars a week later. Maybe in this same intuition it can be
analogous to inflation, where literally in a few weeks that hundred dollar bill will not
be worth as much. The agent’s perception of a future reward might be flawed and
not as reliable as one closer in time so it would naturally make more sense to trust in
the closer one more. In addition to this nice intuitive property, it has a very useful
mathematical property. Sometimes we predict the return by taking an infinite sum of
the rewards. Having a discount attached to rewards in the future ensures that the
sum converges to a finite number.

	 In order to reduce the variance of a policy gradient, we use these rewards to
go function instead of the entire sum or rewards. We only want the actions taken
after the reward to factor into how the agent processes the world. This rewards to
go function sums up the rewards from a single time step in time until the
termination of the episode. The purpose of implementing the rewards to go, is to
only consider the effects after an action was taking when updating the policy. If you
remember from earlier, B.F. Skinner realized that changes in actions are a direct

McGaughey 10

result of their consequences in the environment. It would not make sense to treat a
state or reward early in an episode as a consequence of a later action.

Value functions

	 Almost every RL algorithm uses some variation of a value function. A value
function will estimate the value of taking an action in any given state. This value
function has many different variations, there is the infinite discounted return or the
undercounted finite horizon return. Take again the example of a robot living in some
world, this value function would compute the value of an action by taking that
action then determining every reward that would happen if the policy was followed.
Given some policy π that the robot uses to map states to actions, the value function
will give the expected return of the agent following this policy. Notice that this
makes sense in the deterministic case, where each state gives exactly one action. In
the stochastic case, it does not seem to make as much sense, it seems as though
this return could have many different values because of sampling from a distribution
of actions. Many different variations of this ‘value function’ exist in the realm of deep
RL algorithms. There are four main types of value functions that are completely
necessary to understand before moving forward into other deep RL topics: on-
policy value function, on-policy action-value function, optimal value function, and
optimal value-action function.

	 The on-policy value function is saying that with some current policy π, if we
continue to abide by that policy the value function is the value of that current state.
This is a great way of taking the pure value of the state so
the agent can have another tool to construct a proper
view of the environment. Where the on-policy value
function is on instruction of the current policy, the
optimal value function of a state is if the agent were to follow some optimal policy.

	 The on-policy action-value function is the infinite discounted reward return of
taking an action, then following a given policy. Let’s say that Tim the robot is in the
middle of learning a policy, and we want some measure of how good an action is. Of
course, this prediction’s legitimacy will be limited by how good the policy in place is.
Let’s say for simplicity’s sake, the robot has a discrete action set of up, down, left, or
right. We could estimate the value of each action like we did with just the value
function. Additionally, much like the optimal value function, there is an optimal

action-value function that, given any
arbitrary action, will output a value.
In Tim’s case, he would weigh each
action based on the action-value

function dependent on the current policy and assign each action some value. One

McGaughey 11

might imagine that if the agent knew the optimal policy it could compute the
optimal value and the optimal action-values from any particular state.

	 One of the biggest branches of RL is called Q-learning, dealing with learning
an optimal action-value function. Just as the optimal policy function might be
approximated by a neural network, so can the Q function. Where the policy π is
parameterized by the greek letter θ, the parameters in the value function are
denoted by φ. The value of any given state is just as it might seem, how good or bad
being in a certain state is. Winning a game might be defined simply as seeing as
many of these high valued states as possible. You will see later that valuing a state in
a stochastic environment, especially a complex and dynamical environment is
challenging. A value is under a given policy, and given a stochastic policy, there are
many different trajectories the agent could take from any state following the policy.
The value of a state is what is expected, and is computed by taking every possible
trajectory and weighing the return of that trajectory against it. It is infeasible, a
waste of time, to compute all of this. Deep Q-learning uses neural network
approximations to estimate the value or quality function.

	 Both the action-value function and the value function obey the equation to
the right, which when looked at can be understood without too much thought. The
reward from a state and action added to the value function from the next state is
equivalent to the value of the current
state. The same is true with the Q
function; The quality of taking any
arbitrary action in a state is equivalent to
the reward of that action added to the
quality of the next state action pair. The only way in which the Q-function differs
from the value function is that the Value function takes an action given by the policy
and the Q function takes all possible actions and picks the best one. Q-learning is
dependent on discrete action spaces, because it needs to compute the value
function for states after every possible action. Policy optimization does not go the
same route as Q learning, policy optimization attempts to solve the problem almost
at the root.

	 In many policy gradient problems, we do not need to get an exact value for
each state, or state action pair. What we really care about when learning a policy is
the relative value of an action, compared to all of the other actions the agent could
take. How good a state is in general is the value of that state, which is approximated
using a neural network for complicated environments. We really only care about if
taking a different action will lead us to better results than the previous set of actions
we were taking. Subtracting the Q function from the Value function gives us this
estimate to how much better the action is, which is called the Advantage function.
We want to reinforce policies that give us a positive advantage function, and
decrease those that lead to bad actions.“High-Dimensional Continuous Control

McGaughey 12

Using Generalized Advantage Estimation” gives a full mathematical intuition for an
advantage estimation method called GAE. This specific advantage estimation
function is what is used in following policy gradient algorithms.

	

Credit assignment problem

	 The credit assignment problem is both prevalent in RL and cognitive
sciences. For what reason did the agent get a reward, and in turn which actions can
we change to push up the cumulative reward. This is not only a reinforcement
learning problem, a big part of analysis in many fields is seeing which components
of a system led to it working the way it does.

	 I am a gymnast, if at a competition I bend my legs on the vault, fall on the
floor, hit a perfect routine on the pommel horse, and do mediocre on everything
else, then at the end I get some all around score. Maybe my mean score from the
whole season is 70, if I get a 68.3 at this meet, the credit assignment problem is the
problem of determining what exactly led to this. If I was to define rewards more
frequently in the trajectory I could more accurately determine what led to the score
I got and how to change my actions to benefit the final score. Let’s say I got
feedback after each routine, a 12.4 for high bar, a 10.3 on floor, and so on. Maybe
then I could go back to the gym and train those events especially hard to prepare
for the next meet. Even further, there are specific things that led to the scores I got
on each of those events, the sum of the difficulties of skills minus deductions. If I got
a positive reward for every hard skill I did and a negative reward for every deduction,
I would be even more equipped with knowledge to go back to the gym and train.

	 The problem with credit assignment is that we humans do not always know
how to assign a reward to a particular state. Take chess for instance, maybe we
could provide more frequent rewards by assigning positive rewards to taking an
opponent’s piece, and negative rewards to losing a piece. When we think about this
in depth, adding too many rewards may obscure the overall objective of the game.
The agent might be focused on taking pieces while the opponent has sneakily put
the agent into checkmate. This is the credit assignment problem, and it really boils
down to how well humans understand systems and environments because we are
the ones placing reward on being in states. In problems like these, where there
needs to be a full understanding of the dynamics present in an environment, people
well versed in their particular field will shine. This is where computer scientists do
not have the advantage, they cannot understand a biological or a physical system
better than a biologist or a physicist, and therefore are less equipped to assign
rewards to states in the environment. I believe communication between all sorts of
intellectual domains is so important to creating new technologies throughout deep
learning.

McGaughey 13

Temporal Difference and Monte Carlo learning

	 In a Markov Decision Process (MDP), the future is independent of that past
given all of the information in the present moment. This is to say that the best action
from a given state to make in an environment is not dependent on previous actions,
states, or rewards. For the agent to take advantage of the MDP properly, it needs to
be able to see the whole environment, in other words the observation is the entire
state. A flow chart would be a good example of an
MDP, given any place that one might land on the
flowchart there is a next step independent of how
you got there. There might be many ways to get to
that particular state in the flowchart, but they
don’t influence the future. In the image to the left,
there are three different states represented by the
green circles and two different actions. It may not
be obvious, but this is an MDP. Once in a state,
regardless of how the agent might have gotten
there, there exists a constant reward structure. An
effective way of maximizing a score in an
environment is learning the MDP, then taking
actions from that particular model.

	 Maybe there is an environment, like
blackjack, that does in fact have a MDP which structures the rewards system of the
environment. But because the Agent cannot look at the other player’s cards, it
cannot observe the complete MDP. These types of situations are called partially
observable MDPs. Additionally, there are environments with no underlying MDPs,
where the past does have a lasting impact on the future. From this, there are two
main systems of learning: Temporal Difference learning, and Monte Carlo learning.
Temporal Difference (TD) learning has a built in assumption that the agent is in a
fully observable MDP. TD learning provides a learning advantage as an algorithm
because it learns an MDP from which it can take actions. Effectively, TD learning
learns this MDP map. Monte Carlo (MC) learning is generally less effective in a MDP
when compared to TD because it does not take into account the properties of the
MDP.

	 We know that MC is not as good at solving MDPs as a TD algorithm would be,
but what exactly is MC learning? A Monte Carlo learning algorithm will learn by
sampling from an episode. After completing an episode, or dying in a simulation,
the agent will look back over an episode of experience, find the mean return over
trajectories and calculate the values of states accordingly. MC is a much more
general family of algorithms than TD is. When we do not know anything about the

McGaughey 14

MDP From Wiki User: Waldoalvarez

transition qualities within the environment, we must use MC because we cannot
assume there is a MDP. It will update the policy after the entire trajectory is stored in
memory, at the termination of the episode. Where MC will wait until the end of the
episode, temporal difference helps develop a fuller picture for the dynamic of the
environment by updating throughout the episode. Let’s say that we are measuring
the weather over time in Dallas. We have an alright model about how to predict the
weather a few weeks into the future, let's say our goal is to predict the weather for
week three using this model. It is week one right now, but we can actually change
our model sometime during week two because the weather in week two tells us
something about the weather in week three. These intermediate changes of the
model are what make TD learning successful.

	 In TD learning, there is this concept of an error for each time step, often
represented as δ. This error holds the information about how for how close the value
approximation is to the reward structure in the environment. The value of state two
should be equal to the value of state one plus the reward from state one. Minimizing
this difference, the TD error, is how the value function will approximate the true
value function of the environment.

Policy Optimization

	 How exactly we make a policy optimization algorithm is difficult. The general
flow of ideas generally looks something like observations about the world or
humans, the formulation of mathematical relationships between them, manipulation
of formulas to work, and finally the translation of mathematics into something a
computer is able to read. One of these ideas about how to optimize learning is
called a policy gradient, a way that the artificial neurons in the deep neural policy
network change themselves to most quickly change the behavior of the policy.
Imagine it as many small steps shifting the parameters of the policy function closer
and closer to an optimal policy.

	 Most deep neural networks are trained using gradient descent and are
guided by some loss function. If a convolutional neural network, a type of DNN, is
used for classifying images into different kinds of birds, the loss function would be
some metric that tells the last layer of the net how wrong it is. Remember that the
last layer is where all of the neurons come together to form some conclusions about
the input. After the network is told how wrong it was in its conclusion, by stochastic

gradient descent the network tunes all of its
parameters in a direction that most quickly
decreases the loss function. For this problem
of birds, you might imagine some
predefined solution space that exists for the
problem at hand. With our neural network,

McGaughey 15

we are able to navigate through this high dimensional solution space, and
approximate solutions by stepping towards a minimum of the loss function. This
notion of approximation and not perfection is important to keep in mind, and it
explains why we need things like a very small learning rate, as not to overstep this
preexisting function that we are navigating. In this colorful image to the right from
sciencemag.org, you might image this as a solution to a neural network with two
parameters. Each combination of these parameters has a corresponding loss value,
maybe how accurate it is in classifying some phenomenon. For every instance,
every place in time, the parameters of the net are at one point in this solution space,
and we are able to calculate the direction to move these two parameters to most
quickly decrease the loss value of the parameters. Imagine you are an ant in a
complex, hilly, cloudy environment and you want to get down the hill. You can see
what is exactly in front of you, but no further. In this intuition, being the ant you
would not want to walk for too long before looking again, because the environment
will change. This is the gradient, it tells part of the story of the shape of the solution
specifically a direction but nothing else.

	 In real problems, this is not a three dimensional space with only two
parameters, it is likely a space with a few hundred dimensions. Although this might
be hard to wrap your head around, understand that the idea of computing a
gradient does not really change when more dimensions are added. In a policy
network or a classifier network, there are still local minimums and maximums in the
space of all different combinations of the parameters. Convergence means that we
find one of these minimums or maximums. Take for instance, a network’s
parameters are in a local minimum, this makes the gradient zero and that point,
meaning that any movement will increase the loss function. But does this mean that
we have found the absolute best set of parameters to solve the problem? No. What
we have converged upon is a local minimum, meaning that there might be dips in
parameter space that have a lower loss value than the minimum we found. In
machine learning terms, the process of approaching a local minimum is called
training a network. When we begin the process of training we randomly initialize the
parameters in the network, normally according to a normal distribution. This
initialization corresponds to some loss value, and more importantly a different local
shape of the loss function we attempt to solve. This is why, with the exact same
gradient descent algorithm we can reach vastly different solutions for the same
problem with different initializations. We assume that this loss function is always
continuous and differentiable with respect to the loss. Given enough steps for a
classifier and properly labeled data, gradient descent will converge on a set of
parameters given any arbitrary initialization of parameters. For this reason it is
important to do more than one trial to diagnose the effectiveness of an algorithm.

	 There are a few big differences between a policy network in a RL agent, and
the typical DNNs you might see in a classifier. The goal is to minimize some function

McGaughey 16

http://sciencemag.org/
http://sciencemag.org/

in a classifier, to apply gradient descent iteratively in order to approach an optimal
solution. In RL, the primary purpose is to maximize a score function dependent on
the policy, not to minimize an error. Gradient ascent is taking steps to maximize a
function where gradient descent is taking steps to minimize one. Just as we might
measure the performance of a classifier with L(θ), we measure the performance of a
policy with the infinite discounted sum of rewards from a given trajectory under π,
called J(θ). This really is not as complicated as it might sound. Given the current
policy we have, we measure how good this policy is by collecting the expected sum
of the rewards, which we call the expected return. This should be a fairly clear
concept, easily grasped. We want to capture this idea of an expectation in the
language of mathematics; given this policy π what is the expected value of a state
over the trajectory. The “E” symbol means an expectation and the π as a subscript
means it is an exception under π. This expectation functional takes a weighted
average of whatever variables are calculating the expectation of. This weighted
average weights the return of a trajectory by the strength of the probability of that
trajectory actually happening: π(τ;θ). π(τ;θ) being the probability of taking trajectory
τ given the current parameters θ with policy π. So summing the essence of an
expectation up, it is weighing the return of every trajectory on the basis of how likely
it is to occur given the current policy parameters, and giving the sum of all of them.
There are many different ways this trajectory could lay out, different actions and
consequently different states, remember this is due to the stochastic nature of the
policy. Note that the expectation is not a function, but a functional because it takes
functions as inputs and outputs a series of random variables. A fair amount of
mathematics, and an even greater amount of math relating to RL, has the property
of taking intuitive ideas like expectation and defining them mathematically so that
computers may use them. I think that anyone can have a pretty full understanding of
the expectation function when pondering on it for a long enough time.

	 Let’s think a little bit more about what taking a gradient means in the context
of the expected return. What effects does changing the parameters of the policy
have on the performance exactly? Well it is certain that there will be a different
action distribution, and this different action distribution will certainly lead to a
different state distribution. With changes to the policy, there are changes in the
state distribution, therefore the gradient of the performance should really account
for how the state distribution changes. Now arises the issue that the function of the
environment is unknown, we simply cannot predict what exact changes to the state
distribution given a change in the action distribution. There is an essential part of
the dynamics of the return we must ignore to derive a policy gradient, which is why
we must tread extremely carefully when making updates to the policy. To find a
gradient and step in that direction is a linear approximation, which becomes more
inaccurate for larger steps. Adding on top of this inaccuracy for higher steps is the
uncertainty in how the state distribution will change, and larger and larger steps will

McGaughey 17

continue to increase that uncertainty. Keep this in mind as we move forward with
finding the policy gradient.

	 Follow along with my explanation, and the mathematical derivation of the
policy gradient. Step one is to define the performance, J(θ), as some expected value
under x of ƒ(x). Step two is to expand the expectation in its integral form, this
integral creates a weighted ‘sum’ of ƒ(x), which will represent the trajectory. After
this, we move the gradient inside the integral as you see in step three. It is not
optimal to have to compute the gradient over the probability p(x;θ) for a few
reasons. First of all, we would like to convert this
back into an expectation eventually, so we need
a standalone probability distribution under π
without the gradient. Secondly, it is
mathematically extraneous, and when doing
these calculations on a computer, a huge
number of small probabilities accounts for a lot
of the imprecision that comes naturally with float
point numbers. Taking the gradient of the
logarithm probability distribution actually solves
both of these problems. The logarithmic is more numerically stable for computers, it
keeps values from rapidly approaching zero which otherwise might result in some
error. If the gradient of an argument is divided by that argument, it is equal to the
gradient of the logarithm of that argument. This actually takes care of being able to
convert the integral back into an expectation. In step 5, it is shown that the final
gradient J can be written as an expectation under the policy.

	 This is a linear model of learning, meaning that for any instance of J(θ), we
have expanded our vision just a bit to see what moving in any direction will do to the
overall reward function. This is only accurate within a short time step because a
linear approximation is not really a good estimation of the function. These iterative
steps become more and more inaccurate as we increase the learning rate, α, off the
function not only because the linear approximation is inaccurate for big steps, and

with the uncertainty of the change in the state
distribution. Recall from earlier that the state
distribution has a significant effect on the reward, and

this policy gradient derivation is not involved in the
stated distribution. Because the function of the environment is unknown, there is
uncertainty with how the state distribution will change. If the agent updates its
policy by too much it can be detrimental to the success of the agent. The agent’s
policy is attempting to climb this hill in parameter space, and taking too large of a
step is being thrown off of that hill. The agent might see states totally different to
what it has been seeing, and the value of these states might be much lower than
previously. This limits the policy updates to an extremely small learning rate, which

McGaughey 18

has the effect of slowing learning down considerably and makes scaling up to more
complex environments unrealistic. The essence of trust region policy optimization
and proximal policy optimization is to solve this problem by defining how far is safe
for the policy to update.

A simple policy gradient

	 Mathematics is nice, pretty, accounting for things like infinite integrals.
Translating ideas from the theoretical language of math into very real applications in
code forces us to come up with solutions. These solutions are beautiful, the use of
neural networks as function approximation for the value and policy functions,
transforming theoretical ideas in math into tangible things that a computer can do.
Something that might have not been so obvious earlier is that in fact we do need a
neural network for the value function. It doesn’t necessarily need to be a value
function per se, it could be any measurement of how good a state is. Denoted with
parameters φ, the value function is trained to approximate the rewards-to-go from
any given state. Trained with your typical gradient descent algorithm, it attempts to
minimize mean squared error between rewards to go and the old value function.
While the policy network learns how to assign actions to states, the value network
will learn how to assign values to states. You will see how these two networks work
together to solve problems.

	 If learning python sounds like something that you might want to get into, I
encourage you to go look into my code in my GitHub repository: "https://
github.com/jackmcgaughey/reinforcement_learning". I think looking at code and
trying to understand it is very helpful in understanding what is necessary to writing
code. There are so many technicalities in programming, data types that only work
with specific things. Sometime things will not work because the wrong type of list or
array was used, and the only way to get over this hump is to simply put in the time
and effort to learning.

	 Actor-Critic is a simple way to combine policy gradients and value functions.
It consists of two main components which hold neural networks, the actor and the
critic. The actor takes steps given what the critic has to say about any state. Looking
back to the derivation of the policy gradient, this term R(τ) is what serves to signify
if the trajectory taken was good or bad, then the parameters are updated
accordingly. An approximation for the expected return is the critic, and fittingly so, it
critiques how good or bad a policy is on the basis of its trajectory. The critic is not
always specific to being the expected return, it serves the purpose of being a critic
in whatever way might be most beneficial to the algorithm as a whole. You could see
the critic as an Advantage function as discussed earlier, a Q function, or a value
function. The actor receives this information from the critic about how good the
trajectory was under the current policy. The actor then takes steps to change the

McGaughey 19

https://github.com/jackmcgaughey/reinforcement_learning
https://github.com/jackmcgaughey/reinforcement_learning

parameters of the policy function in a way that moves the agent towards taking a
better, higher valued trajectory. What is nice about this Actor-Critic architecture, is
that it's really easy to understand and read in python, because most of the time they
will have separate classes.

	 In my GitHub repo, you can find my implementations of the algorithms I did
and even run them yourself if you want to. For the first one, I used an Actor-Critic
architecture, and designed the algorithm for temporal difference learning. The
environment that the agent played in is called continuous mountain climber. The
goal of the game is to reach the top of the hill, but the only
way the agent is able to accomplish this, is if it swings back
and gains momentum to make its way up the hill. A funny
thing happened when running my algorithm is that it never
actually got a score above zero. This just goes to
demonstrate that the agent’s method of optimization might
not be exactly the most optimal solution you had in your
head. Instead of maximizing a positive score by reaching the
top of the hill, the agent minimizes negative reward. The
agent just sits at the bottom of the hill and tries to move as little as possible, this is
how it creates an optimal solution to the environment. This temporal difference
algorithm keeps track at every time step of how far the value estimate is from the
reward given, and it attempts to minimize this loss over time.

	 Instead of fitting a neural network to be the value function, another method
is to simply sample off of the environment to learn. This algorithm called REINFORCE
is the second algorithm I wrote out in code, and it does not use a second neural
network for the value function. I decided to try a different environment for my
implementation of REINFORCE.
From open AI’s gym, I chose the
classic Cart Pole environment. The
goal for the agent is to balance the
pole on top of the cart, which the
agent has control over. Firstly, I
collected the trajectories of the
episodes; the observations,
actions, and rewards. After
calculating the discounted
rewards to go, I used the policy
gradient theorem to calculate the
gradient. The agent was able to
solve the environment, achieving a
max score of 200 points after about 300 episodes consistently. To the right here is a
graph of episodes versus the reward over that episode. It is evident that the agent is

McGaughey 20

learning how to maximize its score in the environment in that over episodes, the
total reward goes up. It levels out when the reward reaches 200 because that is the
maximum reward the agent can have. So what does solving the environment
actually look like? It looks like balancing the pole on the cart for the whole length of
the episode, for a good visual representation go to this YouTube link: “https://
www.youtube.com/watch?v=ooOA0q2skmE".

Other methods of policy optimization

	 If you take a look at either one of my scripts in my repository, you’ll see how
low the learning rates are. I mentioned this problem earlier, these algorithms are
very unstable for larger learning rates. What TRPO and PPO do, is they define
boundaries for how far the policy can update given the current policy. Making too
large of an update in parameter space can completely knock the agent off of the
path it was learning on. It is comparable to climbing up a rocky, steep, dangerous
hill. Just looking at the equations for normal policy gradients, by taking the gradient
of the expected return with respect to the parameters of the neural network the
direction to update is decided, and then the step is taken. The step size, α, is
predetermined and the same regardless of the policy. In trust region policy
optimization, the maximum step size is determined, then the optimal direction to
step in is determined. But why is this method better in terms of updating policies?
Partially because it is dynamic, the agent can change the size of this trust region
based on the performance of the policy at any given time. The new policy, after an
update, should not be too different than the old one.

	 What size the trust region should be is the main problem TRPO and PPO
solves. Remember one of the key problems with updating too much is the change in
the state distribution as a consequence of changes in the action distribution. If the
rewards structure of the environment is an unknown, which often it is, then there is
no known transition model for states. The policy’s effect on the action distribution is
derivable, but the policy’s effect on the states the agent sees is not. The policy
gradient theorem is quite a clever trick in the sense that it provides a derivation of
the performance with respect to the parameters without differentiating the state
distribution. TRPO and PPO (in some instances) measure the divergence between
the old policy and the new policy in terms of the state distributions. I got this image
to the right from Open AI’s spinning up documentation, an amazing and helpful site
for learning about policy optimization. This
divergence is a KL-divergence, which is a
measurement of the “distance” between
two distributions. In this case, the KL-
divergence is measuring how different the state distributions under policy π with the

McGaughey 21

https://www.youtube.com/watch?v=ooOA0q2skmE
https://www.youtube.com/watch?v=ooOA0q2skmE

new and old parameters θ. This dynamic safety measurement keeps the agent from
overstepping in parameter space.

	 If the update safety net is expressed in terms of the KL-divergence, then
there must be a measurement of how good or bad the new policy is. By using the
same data collected under the old policy, the performance between the new and

old policies are compared by dividing new
by the end. Taking the expectation of the
product of the comparison term and the
advantage function for given actions and
states, gives the expression of the

surrogate advantage. To the right, also from
the spinning up documentation might be a bit easier to understand. Think of the KL-
divergence term as a kind of a constraint to the surrogate advantage. But to be a
constraint, it would need to be constrained to some value. This KL-divergence term
must be less than some value. So all and all, a perfect TRPO update would find the
best set of parameters θ which maximized the surrogate advantage but the KL-
divergence limit condition is still satisfied.

	 Theoretically, this is great and easy to understand. But implementing this into
code… is quite a challenge, and a reason why I didn’t include it in this paper.
Basically, it involves approximating the surrogate advantage and the divergence
using a Taylor series expansion. If you really feel like you want to dive into the math,
then I recommend reading Trust Region Policy Optimization by Schulman. There is
about five pages of math, too complicated for me to sit and sift through. What is
more feasible to workout and write into code is the Proximal Policy Optimization
algorithm.

	 PPO solves the same problem that TRPO solves, but in a first order way. There
are technically two different PPO methods, there is the KL-divergence penalty and
the clipped advantage. The one most easy to understand, and the one which is used
the most is the PPO-clip. PPO has no need for this measurement between
distributions made by the policy, it has no KL-divergence term, PPO limits moving
too far away from previous policies in a different way. Still it is help to visualize this
as making some sphere of how far or close the policy is allowed to update. There is
a structure of clipping this objective function that constrains how far it can update,
it creates a boundary. It will be allowed to update to anything under this condition,
and the algorithms are structured in a really simple and easy to understand fashion.
There is somewhat of a ceiling, that does not reward or incentivize going past this
ceiling.

Citations:

McGaughey 22

	 aiSUTRA. Medium, 2020, medium.com/@sendamailtokarthik/gradient-		
	 	 	 descent-611d696451e0.

	 Breloff, Tom. “Deep Reinforcement Learning with Online Generalized
Advantage 	 	 	 Estimation.” Deep Reinforcement Learning
with Online Generalized Advantage 	 	 	 Estimation – Tom
Brelof, 2016, www.breloff.com/DeepRL-OnlineGAE/.

	 Hui, Jonathan. “RL - Proximal Policy Optimization (PPO) Explained.”
Medium, Medium, 		 29 Dec. 2018, jonathan-hui.medium.com/rl-
proximal-policy-optimization-ppo-	 	 	
explained-77f014ec3f12.

	 JoshAchiam, Josh. “Welcome to Spinning Up in Deep RL!¶.” Welcome
to Spinning Up in 	 	 Deep RL! - Spinning Up Documentation, 2018,
spinningup.openai.com/en/latest/.

	 Schulman, John, et al. “High-Dimensional Continuous Control Using
Generalized 	 	 	 Advantage Estimation.” ArXiv.org, 20
Oct. 2018, arxiv.org/abs/1506.02438.

	 Schulman, John, et al. “Proximal Policy Optimization Algorithms.”
ArXiv.org, 28 Aug. 		 	 2017, arxiv.org/abs/1707.06347.

	 Schulman, John, et al. “Proximal Policy Optimization Algorithms.”
ArXiv.org, 28 Aug. 		 	 2017, arxiv.org/abs/1707.06347.

	 Schulman, John, et al. “Trust Region Policy Optimization.” ArXiv.org, 20
Apr. 2017, 	 	 	 arxiv.org/abs/1502.05477.

	 Schulman, John. HIGH-DIMENSIONAL CONTINUOUS CONTROL USING
	 	 	 	 GENERALIZED ADVANTAGE ESTIMATION.
2018, arxiv.org/pdf/1506.02438.pdf.

	 Schulman, john. OPTIMIZING EXPECTATIONS: FROM DEEP
REINFORCEMENT 	 	 	 LEARNING TO STOCHASTIC
COMPUTATION GRAPHS. 2016.

	 Simonini, Thomas. “An Introduction to Policy Gradients with Cartpole
and Doom.” 		 	 Medium, FreeCodeCamp.org, 5 Feb. 2019,
medium.com/free-code-camp/an-	 	 	 introduction-to-
policy-gradients-with-cartpole-and-doom-495b5ef2207f.

McGaughey 23

http://medium.com/@sendamailtokarthik/gradient-
http://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-
http://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-
http://medium.com/free-code-camp/an-

	 Sutton. Policy Gradient Methods for Reinforcement Learning with
Function Approximation. 	2000.

McGaughey 24

